BLAST Training

Daniel UdwaryNERSC Data Science Engagement Group
December 16, 2015

Why am I running a BLAST tutorial?

BLAST makes up a very significant portion of the JGI's compute workload

And, we've found that most BLAST usage on Genepool could be done more efficiently...

Simple dotplots

How it works

Compare my name: With my father's:

Daniel Wayne Udwary Wayne John Udwary

How it works

Compare my name: Daniel Wayne Udwary With my wife's: Megan Eileen Welsh

Local vs Global Alignment

Which is "best"?

```
DANIELWAYNE----UDWARY
.....||||||
-----WAYNEJOHNUDWARY
```

```
DA-NIELWAYNEUDWARY
.|.|.|.|.|||
WAYN-E-JOHN-UDWARY
```


BLAST searches for the best local alignment(s) "Basic Local Alignment Search Tool"

Recommendation Zero:

- Is BLAST the best tool for the job?
- Which BLAST executable is going to give you the results you actually want?

blastn

blastp Computation time:

blastx >> blastp > blastn

tblastn

tblastx <u>Possible alternatives:</u>

deltablast LAST

legacy_blast.pl BLAT

psiblast MegaBLAST

rpsblast hmmer

rpstblastn usearch

short-read aligners phylogenetic tools

The BLAST algorithm

Four major steps:

- Seeding
 - Drawing the dots
- Extension
 - Drawing the lines
- Evaluation
 - Figuring out which lines are best
- Output
 - Writing the results out to disk

Seeding

- Significant alignments have "words" in common.

When comparing two sequences, BLAST breaks sequences into each word

- Each word and its location stored in a database prior to execution of the search.
- So, word search/matching is just database lookup.
 (Very fast)

Problems (depending on word size)

- -- But some words too common to be "important"
- -- Some related sequences may have no common words

So, BLAST employs a "neighborhood" of similar words to generate "word hits" if score *T* threshold is reached.

Word	Score (T)
<u>RGD</u>	17
KGD	14
QGD	13
RGE	13
EGD	12
HGD	12
NGD	12
RGN	12
AGD	11
MGD	11
RAD	11
RGQ	11
RGS	11
RND	11

Next, generate locations of "word hits" between the two sequences

Can adjust word size and *T* threshold to balance sensitivity with speed.

Higher *T* = fewer word hits = faster algorithm

Protein sequence alignments:

- -- Generally word size = 2 or 3
- -- For speed, often *T* is set arbitrarily large
- -- Filtering of "low-complexity" regions (ie repetitive sequences)

Some differences when aligning nucleotides:

- -- Use only exact-match words (ie no T)
- -- Adjust sensitivity with word size

Extension

Word hits are extended to find additional matching regions

```
The quick brown fox jumps over the lazy dog. The quiet brown cat purrs when she sees him.
```

Assume 'T' in 'The' is the seed, and we extend to the right.


```
The quic
The quie
```

First mismatch. Do we continue or not?

Create variable X, that represents how much the score is allowed to drop off since the last maximum. So, for X=5:

```
The quick brown fox jump
The quiet brown cat purr
123 45654 56789 876 5654 <- score
000 00012 10000 123 4345 <- drop off score
```


Note: Originally, gaps not considered.

Modern implementations use scoring systems with gap penalties considered.

Evaluation

Determine if alignment(s) are statistically significant
- HSP = High-scoring Segment Pair

Goal: Set an alignment threshold score to eliminate small HSPs that may not be relevant.

Common thresholds:

- Certain number of top hits (default = 500)
- % identity (default = not used)
- Evalue (default = 10)

Alignments must also be "consistent"

ie always "downhill"


```
BLASTP 2.2.5 [Nov-16-2002]

Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer, Jinghui Zhang, Zheng Zhang, Mebb Miller, and David J. Lipman (1997), "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids Res. 25:3389-3402.

Query- 002567 MYDGLOBIN. (145 letters)

Database: nr 1,230,998 sequences; 391,609,117 total letters

Searching. done
```

```
Posted date: Jan 18, 2003 11:01 AM
  Number of letters in database: 391,609,117
  Number of sequences in database: 1,230,998
   0.319
           0.130 0.371
Gapped
Lambda
            0.0410
                       0.140
   0.267
Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Hits to DB: 95,320,877
Number of Sequences: 1230998
Number of extensions: 3177411
Number of successful extensions: 8194
Number of sequences better than 10.0: 435
                                                                                                 Footer
Number of HSP's better than 10.0 without gapping: 271
Number of HSP's successfully gapped in prelim test: 164
Number of HSP's that attempted gapping in prelim test: 7851
Number of HSP's gapped (non-prelim): 453
length of query: 145
length of database: 391,609,117
effective HSP length: 121
effective length of query: 24
effective length of database: 242,658,359
effective search space: 5823800616
effective search space used: 5823800616
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
52: 64 (29.3 bits)
```

BLAST output

Standard format
- human readable, but not very easy to parse

```
-outfmt <String>
alignment view options:
```

0 = pairwise,

One-line summaries

/lignments

1 = query-anchored showing identities,

2 = query-anchored no identities,

3 = flat query-anchored, show identities,

4 = flat query-anchored, no identities,

5 = XML Blast output,

6 = tabular,

7 = tabular with comment lines,

8 = Text ASN.1.

9 = Binary ASN.1,

10 = Comma-separated values,

11 = BLAST archive format (ASN.1),

12 = JSON Seqalign output,

13 = JSON Blast output,

14 = XML2 Blast output

The *modern* BLAST algorithm

Four major steps:

- Seeding
 - Break sequence(s) into words, search for similar words in database
 - Calculate E-value to select HSPs
 - Pass selected number of HSPs to extension step
- Extension
 - Generate alignment
- Evaluation
 - Perform additional evaluations (%identity, %positives, %gaps)
- Output
 - Write out to disk in one of 16 formats

Recommendation 1:

Use a modern BLAST

- "module load blast+" = most recent NCBI BLAST package
 - v2.2.31+
- "module load blast" = "legacy" blast, deprecated in 2007
 - v2.2.26
- Different executables, slightly different outputs
 - So, we keep the old one around for older software/pipelines
 - Don't use legacy blast, if you can at all help it!!!
- BLAST+ also shows much better parallelization
 - (much more on that in a few slides!)

Recommendations 2 & 3

Use a realistic E-value threshold

- "-evalue
- Know what it is you want to know from your results.
- In large databases (nt, nr) anything above 1E-5 is firmly in the "Twilight Zone" of sequence homology.
 - Default of 10 is just asking for lots of extra compute time and meaningless results
- For annotation, 1E-20 probably better for interpreting functional relationships

Set a sequence output limit

- "-max_target_seqs 10" for top ten hits. Top 5?
- Does anyone ever want 500 results?

(There may need to be a balance between these two settings...)

A quick thought on Genepool and parallelization...

I need to run 1000 blast searches. So, I'll just set up a task array of 1000 jobs, and it will go a lot faster!

Then, imagine this picture with ~1000 bowls, and 140,000 puppies per day

Putting parallelization to the test

Annotation simulation

- Task: use blastp to compare 100 "putative" protein sequences against NCBI refseq_protein database
- First 100 protein sequences from Streptomyces coelicolor

2.2.26 "Legacy" blastall –p blastp vs 2.2.31 "Blast+" blastp

Contaminant detection simulation

- Task: use blastn to compare 100 1kb "contig" sequences from a bacterial plasmid against NCBI nt database
- 1kb sequences from bacterial plasmid

2.2.26 "Legacy" blastall –p blastn vs 2.2.31 "Blast+" blastn

Putting parallelization to the test

"Annotation" test

Executable	input	threads/ job	Evalue th	output sequences	time to results (not counting queue time)	min/max walltime per job	total walltime	walltime hours
2.2.26	1x100	1	10	500/250	28 m	95/1599	81034	22.5
2.2.26	1x100	1	1.00E-20	500/250	37 m	218/2195	71806	19.9
2.2.26	1x100	1	1.00E-20	5/5	34 m	195/2053	59674	16.6
2.2.31+	1x100	1	1.00E-20	5	26 m	208/1558	59734	16.6
2.2.31+	100x1	1	0.1	500	595 m		35731	9.9
2.2.31+	100x1	8	0.1	500	90 m		5364	1.5
2.2.31+	100x1	16	0.1	500	84 m		5061	1.4
2.2.31+	100x1	16	1.00E-20	500	36 m		2164	0.6

Putting parallelization to the test

"Contaminant detection" test

100 sequences blasted vs NCBI "nt" database with default parameters, except specification of number of threads

Executable	input	threads/job	time to results (not counting initial queue time)	total walltime	walltime minutes
2.2.26	1x100	1	55 min	9901.5	165.0
2.2.31+	1x100	1	16 min	4123.3	68.7
2.2.31+	100x1	1	3 min	165.2	2.8
2.2.31+	100x1	8	1 min	62.3	1.1

Why so much improvement with multiple inputs?

Recommendations 4 & 5:

Batch your BLAST input!

- Current BLAST treats multiple input sequences as a single one for seeding purposes, then breaks up the results before extension
- With many sequences, this dramatically reduces the number of database queries

- When batching many sequences, use
 "-num_threads 8"
 - Current version doesn't seem to scale above 8 threads

How is JGI doing with all that currently?

Mostly outdated versions of blast are being used

•	1104031 /global/dna/projectdirs/microbial/omics-pamm/lib/BLAST/blastall	(2.2.21)
•	698394 blastall	(probably 2.2.26)
•	653252 blastx	
•	600898 /global/dna/projectdirs/fungal/pipeline/FRK/bin/euk/linux/blast/blastall	(2.2.4)
•	274490 /global/dna/projectdirs/fungal/pipeline/2015-01-09_v1.9.1/bin/euk/linux/blast/blastall	(2.2.4)
•	183805 /global/dna/projectdirs/fungal/pipeline/FRK/utils/iprscan//bin/binaries/blast/blastall	(2.2.6)
•	160761 /usr/common/jgi/aligners/blast/2.2.26/bin/blastall	(2.2.26)
•	138106 /global/dna/projectdirs/microbial/omics-pamm/lib/rpsblast/rpsblast	(2.2.23)
•	46672 bin/blast/2.2.6/blastall	(2.2.6)
•	24411 blastn	
•	16832 bin/blast/2.2.19/blastall	(2.2.19)
•	15190 megablast	
•	13789 /projectb/sandbox/plant/iprscan/iprscan.uge/bin/binaries/blast/blastall	(2.2.19)
•	12505 /usr/common/jgi/aligners/blast+/2.2.28/bin/blastn	
•	10769	
•	7926 /usr/common/jgi/aligners/wublast/20060510/blastp	

- 5101 /global/dna/projectdirs/plant/tools/compgen/rmblast/DEFAULT/bin/rmblastn
- 2428 /usr/common/jgi/aligners/blast+/2.2.29/bin/blastn
- 2415 /usr/common/jgi/aligners/blast+/2.2.31/bin/blastn
- 1717 /global/projectb/sandbox/IMG/img/dataLoad5/tools/blast/rpsblast
- 1283 /usr/common/jgi/aligners/blast+/2.2.26/bin/tblastn

How is JGI doing with all that currently?

Many users using very large E-values

count	evalue threshold	count	evalue threshold
1719	1.00E-100	770353	1.00E-01
2485	1.00E-50	769204	1.00E-05
595500	1.00E-30	743675	1.00E-03
41033	1.00E-20	692386	1
13601	1.00E-10	595500	1.00E-30
4620	1.00E-08	165291	1.00E-02
769204	1.00E-05	121467	1.00E-04
121467	1.00E-04	56398	1.00E+01
743675	1.00E-03	41033	1.00E-20
165291	1.00E-02	13601	1.00E-10
770353	1.00E-01	4620	1.00E-08
692386	1	2485	1.00E-50
56398	1.00E+01	1719	1.00E-100
429	1.00E+02	429	1.00E+02

How is JGI doing with all that currently?

About half of BLAST processes are not multithreaded

Processes	Threads
2125509	1
1327906	8
227298	4
132955	2
84781	32
70815	16
7063	5
3151	10

Thoughts on BLAST databases

We see some users with small, specific databases

Database reads

- While extending and evaluating number of HSPs is the most severe bottleneck, accessing the database is a significant one
- Disk access time can be significant, because current version does not read all of db into memory, even if enough memory available to do so.
- Large job arrays may cause GPFS slowdowns
- Reduce disk access time by:
 - Never run from \$HOME directory
 - Stage your database directly to the compute node /scratch
 - Use one of our newly pre-staged standard dbs

Pre-staged standard BLAST databases

- Mendel nodes have more /scratch space, and we are copying some frequently-used databases to
 - /scratch/blastdbs
- Working with users on plan to keep updated
- Current databases:

gcontam unite

mito.nt nt

refseq.archaea refseq.bacteria

refseq.fungi refseq.mitochondrion

refseq.plant refseq.plasmid

refseq.viral

Summary of recommendations

- Ask yourself if BLAST is the best tool for the job, and consider which BLAST executable
- Use a current blast executable
- Use an appropriate E-value for your desired output
- Limit the number of output sequences
- Use multiple sequence inputs
- Use multithreading
- Combine your databases
- Use pre-staged databases, or stage your own

